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Abstract 

Endometrial carcinoma (EC) is the most common gynecologic malignancy in high‑income countries, with its inci‑
dence and mortality rising globally, particularly in countries undergoing rapid socioeconomic transitions. Over 
the past decade, the management of EC has shifted towards molecular classification and biomarker‑driven therapies. 
This shift began in 2013 with the discovery of the 4 prognostic and molecular EC subgroups by The Cancer Genome 
Atlas (TCGA). Following the TCGA discovery, the Proactive Molecular Risk Classifiers for Endometrial Cancer (ProM‑
isE) and the TransPORTEC initiative have provided 4 pragmatic molecular classifiers by combining next‑generation 
sequencing (NGS) and surrogate immunohistochemical markers to TCGA’s categorization: Mismatch Repair Deficient 
(MMRd); p53‑abnormal (p53abn); No Specific Molecular Profile (NSMP); and POLE‑mutant (POLEmut). These subgroups 
not only provide insights into the biological behavior of EC but also have strong clinical relevance and prognostic 
implications. In line with these advancements, the World Health Organization (WHO) endorsed molecular classifica‑
tion in 2020, advocating for its integration into EC pathology reports. In 2023, the Federation of International Gyne‑
cology and Obstetrics (FIGO) proposed a new staging system that integrates histological parameters and molecular 
profiles into routine pathology practice. The use of complete molecular classification surrogates in all EC cases, 
whenever resources permit, is intended to promote prognostic risk‑group stratification, data collection, Lynch Syn‑
drome (LS) screening, and potentially influence adjuvant and systemic treatment decisions, as well as predict the effi‑
cacy of Immune Checkpoint Inhibitors (ICI). Consequently, the evolving landscape of predictive biomarkers in EC 
has gained importance in daily oncology practice, profoundly changing the role of pathologists. Pathologists are now 
crucial in interpreting molecular information and participating as members of multidisciplinary teams in therapeu‑
tic decisions. This review article aims to emphasize the importance of molecular classification in EC and encourage 
pathologists to become familiar with the use of predictive biomarkers in their daily anatomical pathology practice.
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Introduction
Endometrial carcinomas (ECs) rank as the sixth most 
common neoplasm in women worldwide and the sec-
ond most commonly diagnosed cancer of the female 
genital organs, with 420,242 new cases reported in 2022 
(Bray et  al. 2024). Both incidence and mortality rates 
are rising globally, particularly in countries undergoing 
rapid socioeconomic transitions (Lortet-Tieulent et  al. 
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2018). Increased risk factors include exposure to higher 
total concentrations of estrogens, such as earlier age at 
menarche, later age at menopause, nulliparity, obesity, 
tamoxifen use, polycystic ovary syndrome, and estrogen-
producing ovarian tumors (Ali 2014).

The traditional categorization of EC, based on the 
Bokhman classification (endometrioid-type and serous-
type), has been central to risk stratification and guid-
ing clinical decisions for decades (Alexa et  al. 2021). 
Bokhman’s dual-stratified pathway divided ECs into type 
I and type II tumors based on pathological, clinical, and 
epidemiological features (Bokhman 1983). Type I tumors, 
such as endometrioid histotypes, account for over 70% 
of EC cases and are associated with high estrogen levels 
and favorable outcomes. In contrast, type II tumors make 
up approximately 10% of EC cases, including serous and 
clear cell types, which are not associated with high estro-
gen levels and have a worse prognosis, with recurrence 
rates exceeding 50% even in early stages (Inoue et  al. 
2021).

In 2013, the results from the TCGA project were pub-
lished, marking a paradigm shift by describing four 
molecular subgroups of ECs with distinct clinical, patho-
logical, and molecular features (Cancer Genome Atlas 
Research Network et  al. 2013). The TCGA performed 
an integrated genomic, transcriptomic, and proteomic 
characterization of ECs and elegantly demonstrated the 
molecular diversity of EC based on mutational burden 
and somatic copy number variations. Subsequently, sev-
eral large studies have confirmed the strong clinical and 
prognostic relevance of these molecular subgroups, lead-
ing to their incorporation into the management of EC 
(Vermij et al. 2020).

Following the TCGA discovery, the ProMisE and the 
TransPORTEC consortium—two research groups—inde-
pendently developed a pragmatic molecular classifica-
tion by combining next-generation sequencing (NGS) for 
detection of pathogenic POLE mutations and surrogate 
immunohistochemical markers to TCGA’s categoriza-
tion: Mismatch Repair Deficient (MMRd); p53-abnormal 
(p53abn); No Specific Molecular Profile (NSMP); and 
POLE-mutant (POLEmut). In contrast to TCGA meth-
ods, which rely on freshly frozen tissue and require costly 
and complex methodologies, these research groups 
replicated the four TCGA molecular subgroups using 
lower-cost, clinically available diagnostic testing methods 
applied to formalin-fixed, paraffin-embedded (FFPE) tis-
sues (Kommoss et al. 2018; Stelloo et al. 2016).

The development of these pragmatic classifiers with 
strong prognostic and clinical significance prompted 
a revision of the 2020 WHO Classification of Female 
Genital Tumours, 5th edition (Léon-Castillo 2023; 

Concin et  al. 2021). The 2020 WHO Classification 
endorsed incorporating well-established molecular 
parameters into endometrioid endometrial carcinomas 
(EECs) as relevant prognostic information, encourag-
ing their adoption through biomarkers such as targeted 
POLE sequencing, MSH6, PMS2, and p53 immunohis-
tochemistry (IHC) (WHO Classification of Tumours 
Series, 5th ed.; vol. 4). The availability of surrogate 
markers for all molecular subtypes, which can be easily 
applied to FFPE tissues, facilitates the identification of 
subgroups analogous to those previously described by 
TCGA (Léon-Castillo, 2023; Concin et al., 2021).

Following the 2020 WHO classification, the Fed-
eration of International Gynecology and Obstetrics 
(FIGO) proposed a new staging system in 2023 (Berek 
et al. 2023). The updated system focuses on diagnostic 
parameters such as histological type and grade, lym-
phovascular space invasion (LVSI), and molecular alter-
ations, to better reflect the improved understanding of 
the complex nature of the various types of endometrial 
carcinoma and their underlying biological behavior 
(Berek et al., 2023).

The rapid advancement in molecular biological tech-
nologies has enhanced our understanding of the multi-
stage process of endometrial carcinogenesis, extending 
beyond the knowledge of mutations in single oncogenes 
and tumor suppressor genes (Banno et al. 2014). Over 
the last two decades, research has increasingly focused 
on epigenetic mechanisms, such as DNA methylation, 
histone modification, and non-coding RNAs (Banno 
et al., 2014). Understanding the genetic and epigenetic 
events involved in endometrial carcinogenesis has 
become integral to advances in biomarker-driven can-
cer therapies (Eskander et al. 2018).

Tumor biomarkers, which are substances produced 
by tumors or by the body’s response to tumors dur-
ing tumorigenesis and progression, have demonstrated 
critical and promising value in screening and early 
diagnosis, prognosis prediction, recurrence detec-
tion, and monitoring therapeutic efficacy (Zhou et  al. 
2024). Over the past decades, continuous efforts have 
been made to discover novel and cost-effective bio-
markers for application in clinical cancer management. 
Biomarker-based anticancer targeted therapies have 
advanced significantly, promoting personalized medi-
cine and improving outcomes for cancer patients (Zhou 
et al., 2024).

The aim of this review is to provide a better under-
standing of new approaches to EC management, rein-
force the importance of molecular classification, and 
encourage pathologists to become familiar with the 
use of key predictive biomarkers in daily anatomical 
pathology practice.
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An overview of molecular classification in clinical 
decisions
Since the publication of the EC TCGA in 2013, signifi-
cant attention has been given to incorporating molecular 
classification into treatment decision algorithms (Cancer 
Genome Atlas Research Network et al. 2013; Concin et al. 
2021). Following the ProMisE approach, which is more 
pragmatic, many retrospective and prospective cohorts 
have confirmed the prognostic value of molecular classi-
fication (Talhouk et al. 2015). Although there are no ran-
domized clinical trials, some studies have demonstrated 
that molecular classification can indeed predict the ben-
efits of escalating or de-escalating adjuvant treatment. 
In the PORTEC-3 trial, external beam radiotherapy was 
compared to a combination of chemoradiation followed 
by four cycles of carboplatin and paclitaxel in a popula-
tion of high intermediate/high-risk patients (De Boer 
et  al. 2018). The study achieved its primary endpoint, 
showing an increase in progression-free and overall sur-
vival with the experimental arm. A special retrospective 
subgroup analysis was performed after applying molec-
ular classification to the entire patient cohort. In p53 
aberrant tumors, a clear benefit was observed with the 
addition of chemotherapy to radiotherapy. Conversely, 
patients with POLE mutations had excellent overall sur-
vival regardless of the treatment received (León-Castillo 
et al. 2020). Based on these findings, in 2020, the Euro-
pean Societies of Gynecological Oncology (ESGO), Radi-
otherapy (ESTRO), and Pathology (ESP) recommended, 
for the first time, the inclusion of molecular classifica-
tion to guide treatment decisions when the molecular 
classification is known (Concin et  al., 2021). This rec-
ommendation has been endorsed by many international 
guidelines (Oaknin et  al. 2022). Another important ret-
rospective analysis was conducted in the PORTEC-1 and 
PORTEC-2 studies (Creutzberg et al. 2023). After apply-
ing molecular classification, p53 aberrant tumors ben-
efited from external beam radiation, NSMP tumors from 
brachytherapy, and POLE tumors did not appear to ben-
efit from any form of adjuvant radiotherapy. The prospec-
tive RAINBO study will further elucidate how molecular 
classification can be incorporated. In this study, patients 
with POLE mutations will be observed, p53 aberrant 
patients will be randomized to receive olaparib or pla-
cebo maintenance after chemotherapy, non-specific 
molecular profile patients will receive hormonal therapy, 
and mismatch repair patients will receive immunother-
apy (RAINBO Research Consortium 2022).

In the palliative setting, understanding molecular clas-
sification has also enhanced patient management. For 
patients who progress on platinum-based therapies, the 
standard of care includes the combination of pembroli-
zumab and lenvatinib for those with mismatch repair 

proficient tumors (MMRp), and anti-PD-L1 monother-
apy (pembrolizumab or dostarlimab) for mismatch repair 
deficient tumors (MMRd), based on the results of the 
Keynote 775, Keynote 158, and GARNET trials, respec-
tively (Makker et  al. 2023; O’Malley et  al. 2022; Oaknin 
et  al. 2022). With the success of immunotherapy in the 
recurrent setting, four recent randomized clinical trials 
have also demonstrated the benefit of adding anti-PD-1 
(dostarlimab or pembrolizumab) and anti-PD-L1 (dur-
valumab or atezolizumab) therapies in terms of progres-
sion-free survival (Mirza et al. 2023; Eskander et al. 2023; 
Colombo et al. 2024; Westin et al. 2024). The benefit was 
observed in the overall population, but the reduction in 
progression or death was particularly significant in the 
MMRd cohort.

An overview of molecular classification 
in pathological practice
The decision to apply molecular classification to all ECs, 
especially those that are high-grade or high-risk, depends 
on resource availability and the decisions made by the 
multidisciplinary team at each center (Concin et  al. 
2021). A complete molecular classification surrogate 
(POLEmut, MMRd, NSMP, p53abn) aids in prognostic 
risk-group stratification, data collection, LS screening, 
and serves as potential factors influencing adjuvant and 
systemic treatment decisions, as well as for predictive 
value regarding ICI (Addante et  al. 2024; Chacon et  al. 
2024).

In early-stage ECs (stages I and II), the presence of 
POLE mutations (POLEmut) or p53 mutations (p53mut) 
can influence the FIGO stage based on surgical, anatomi-
cal, and histological findings. In contrast, advanced stages 
III and IV of ECs are not typically modified by additional 
molecular analyses. POLEmut ECs are rare at advanced 
stages (Yasuda 2024). Irrespective of the data supporting 
the usefulness of identifying POLE mutations in ECs, this 
sequencing technique is not widely available, and its rela-
tively high cost may constrain its routine use in pathology 
(Yasuda, 2024). Due to the limitations of POLE muta-
tion analysis, it is suggested that morphological screen-
ing of particularly ambiguous histological features and 
rare bizarre nuclei can be useful for selectively enriching 
ECs for POLE mutation analysis (Keyhanian et al. 2024). 
Recently, it has been shown that the presence of morules 
or nuclear expression of β-catenin can effectively rule out 
the POLE mutation, which may help in deciding when to 
withhold further POLE mutation testing based on mor-
phological aspects (Fan et al. 2024).

WHO Recommendations
The WHO encourages the use of complete molecular 
classification surrogate for all ECs, whenever resources 
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allow (WHO Classification of Tumours Series, 5th ed.; 
vol. 4, 2020). Molecular testing for EC, including muta-
tional analysis for POLE and surrogate IHC for MMR 
proteins and p53, is particularly recommended for 
high-grade endometrioid endometrial cancers (EECs) 
and intermediate-high risk ECs (Addante et al. 2024).

British Association of Gynecological Pathologists (BAGP) 
Recommendations
The BAGP provides an algorithm for implementing 
molecular classification that closely aligns with the 
daily practices of gynecological oncologists at their 
hospital. According to this algorithm, all EC biopsies, 
regardless of histotype, are tested by IHC to determine 
mismatch repair (MMR) and p53 status. In contrast 
to WHO recommendations, POLE next-generation 
sequencing (NGS) testing is reserved for cases where 
it is essential for patient care, such as: (1) when POLE 
testing is indicated due to abnormal MMR and/or p53 
IHC results; (2) in Stage I-II non-endometrioid EC 
or any grade endometrioid EC at stage IA with lym-
phovascular space invasion (LVSI) or stage IB/stage II 
regardless of LVSI; (3) when POLE testing is not indi-
cated in Stage III-IV EC unless directed by the multi-
disciplinary team or based on patient choice (British 
Association of Gynaecological Pathologists 2022).

Table  1 Comparison of Molecular Classification 
Algorithms (WHO vs. BAGP).

Main features of the molecular subtypes
POLEmut group
Frequency and clinicopathologic features
POLE mutations are significantly more frequent in high-
grade ECs (12.1%) compared to low-grade ECs (6.2%) 
(Travaglino et  al. 2020). Morphological heterogeneity 
and marked atypia are common features of POLEmut 
ECs, which may also present with giant anaplastic cells 
(Soslow et al. 2019). A relatively high frequency of POLE 
mutations has been observed in undifferentiated/dedif-
ferentiated carcinoma (UDC/DDC) (12.4%), whereas 
lower frequencies are found in clear cell carcinoma 
(CCC) (3.8%) and carcinosarcoma (CS) (5.3%) (Trava-
glino et  al., 2020). Notably, POLE mutations have been 
identified in a significant proportion of mixed endome-
trioid-serous carcinomas in young women (16%). These 
tumors are thought to originate as EECs that secondarily 
develop a serous morphology with or without p53 muta-
tions. Both high-grade features and p53 mutations result 
from a high mutational load but have no additional clini-
cal significance (Casanova et al. 2024). A small subset of 
tumors (3–5%) exhibits more than one molecular feature 
(POLEmut and p53mut or MMRd and p53mut), and 
these are referred to as "multiple classifiers" (León-Cas-
tillo et al. 2020). Figure 1 illustrates a case with histologi-
cal features indicative of a high probability of POLEmut 
EC.

The mutational load itself induces a strong immune 
response due to exposure to multiple neoantigens, which 
is reflected in the lymphocytic infiltration observed in 

Table 1 Algorithm for molecular classification in ECs (WHO and BAGP)
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most (79%) POLEmut ECs and may contribute to their 
favorable prognosis (Van Gool et  al. 2015). Given the 
prominent lymphocytic infiltrates found in most POL-
Emut ECs, it is reasonable to hypothesize that these 
tumors may benefit from immunotherapy (Talhouk et al. 
2019).

Molecular features: POLE exonuclease domain mutational 
status as a biomarker
POLE mutations tend to cluster in the exonuclease 
domain (POLE-exo), especially in the conserved residues 
286 to 411 (Billingsley et al. 2016; Bellone et al. 2017; Bar-
bari et al., 2017). Somatic pathogenic variants in the exo-
nuclease domain (ED) of POLE have been identified in 
2–8% of colorectal cancer (CRC), 7–15% of endometrial 
tumors, and more rarely in other tumor types (Barbari 
et al., 2017).

POLE is critical for DNA proofreading and replication. 
Located on chromosome 12, the POLE gene encodes 
the catalytic subunit of DNA polymerase epsilon, which 
has both DNA polymerase activity (polymerase domain) 
essential for DNA elongation and 3’-5’ exonuclease 
proofreading activity (exonuclease domain) responsible 
for correcting mismatched bases (Yao et al. 2024). Muta-
tions in POLE are associated with hypermutated tumors 
and a favorable response to ICI therapy. The detection of 
POLE mutations in tumors has significant implications 
for treatment decisions. Cancer patients with somatic 

pathogenic variants in the POLE-ED typically have an 
excellent prognosis and a robust response to immune 
checkpoint inhibition, likely due to the strong immune 
response elicited by the large number of neoantigens pro-
duced as a result of hypermutation (Talhouk et al. 2019).

The occurrence of two proofreading-inactivating 
events in POLE is extremely rare, suggesting that POLE 
may not act as a classical tumor suppressor gene (Heitzer 
et al. 2014). Pathogenic variants of POLE (only the POLE 
hotspot mutations were defined as POLE mutated (Léon-
Castillo 2023) can have different functional effects – 
whose functional studies were carried out mostly e.g. by 
yeasts. Different POLE mutation sites can lead to differ-
ent degrees of tumor mutation burden (TMB).

Somatic POLE exonuclease domain mutations (EDMs) 
are found in sporadic ECs (6–10%), but rarely, germline 
POLE mutations can occur (0,25 – 4%). Both the ger-
mline and the somatic DNA polymerase EDMs can 
cause an ‘ultramutated’ type of cancer, sometimes lead-
ing to over a million base substitutions per tumor (Briggs 
et al. 2013). POLE-mut ECs are associated with striking 
CD8 + lymphocytic infiltrate, a gene signature of T-cell 
infiltration, and marked upregulation of cytotoxic T-cell 
effector markers. Because of their remarkable muta-
tion burden, POLE proofreading-mutant cancers are 
predicted to display substantially more antigenic pep-
tides than other tumors, providing a possible explana-
tion about the strong association between cytotoxic 

Fig. 1 A A case of mixed EC (endometrioid‑serous type) at stage 1 (HE, 4X). B Image showing the high‑grade atypia and lymphocytes (TILs). 
(HE, 10X) (C) Giant anaplastic cells (HE, 40X). D p53 aberrant staining in the serous component (*) and p53 wild type (p53wt) in the endometrioid 
component (IHC, 10X). E p53wt (IHC, 40X). F p53abn (IHC, 40X)
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lymphocyte infiltration and favorable outcome in multi-
ple cancers (Inge et al. 2015; Howitt et al. 2015; Bourdais 
et al. 2017).

Germline heterozygous missense mutations affect-
ing the POLE exonuclease domain are associated with 
Polymerase Proofreading-Associated Polyposis (PPAP), 
a syndrome that increases the risk for the development 
of multiple colorectal adenomas and colorectal can-
cer, which exhibits a high TMB and an immunotherapy 
response (Allgäuer et  al., 2018; Endris et  al., 2019). An 
even more immunogenic phenotype is observed when 
a heterozygous POLE-ED mutation is associated with a 
loss-of-function (LoF) genetic event in comparison with 
EC with single POLE-ED alterations. (Rosa et al. 2020).

Truncating mutations in POLE gene are unlikely to 
lead to PPAP phenotype, since a successful DNA synthe-
sis must occur before the proofreading activity of Pol- 
(Heitzer et  al. 2014). By itself, the germline frameshift 
mutation does not confer a genetic predisposition to EC 
and cannot lead to a mutator phenotype in the tumor, but 
might contribute to increase the mutational load because 
only proofreading-deficient Pol- will replicate DNA in 
these tumor cells. Normally, tumors  that harbor the 
S459F mutation in POLE were found to be microsatellite 
stable (Shinbrot et al. 2014; Andrianova et al. 2017; Bar-
bari et al., 2017).

Detection of a combination of POLE-ED and LoF 
POLE mutations could be considered as prognostic or 
therapeutic marker, even if a minority of tumors with 
POLE-ED shows LOH or other inactivating muta-
tions that could act as ‘second hits’ (Heitzer et al. 2014), 
since the absence of a wild-type POLE allele can lead to 
a high TMB (Rosa et al. 2020). The complex relationship 
between POLE hotspot mutation and dMMR/MSI-H in 
EC was fully explored. EC with both POLE hotspot muta-
tion and MSI-H is rare, occurring only in 4.3% of cases. 
However, the associated TMB is high (median TMB is 
339.0 mut/MB), which is consistent with that of cases 
with both POLE hotspot mutation and MSS. The median 
TMB of tumors with POLE non-hotspot mutation and 
MSI is 207.1 mut/MB. The median TMB of EC with 
POLE non-exonuclease domain mutation and MSI is 48.5 
mut/MB (Ma X et al. 2022).

Molecular testing methods: Next Generation Sequencing 
(NGS)
Although mutational signatures are preferably deter-
mined by genomic analysis (Jamieson et  al. 2024), such 
as whole genome sequencing (WGS) and whole exome 
sequencing (WES)—see Supplementary Material 1 – 
some authors have identified some mutational signa-
tures that can be extracted from sequencing data derived 

from a small gene panel (e.g. 63 genes) in tumors that are 
highly mutated (Van Hoeck et al. 2019).

MMRd group
Frequency and clinicopathologic features
The MMRd group represents approximately 30% of ECs 
and is characterized by distinct histopathological fea-
tures, including: (1) origin in the lower uterine segment; 
(2) endometrioid differentiation; (3) severe nuclear atypia 
with an undifferentiated component; (4) high mitotic 
index; (5) high tumor-infiltrating lymphocytes (TILs) 
and/or peri-tumoral lymphocytes (≥ 40 TILs/10 HPFs); 
(6) high morphological heterogeneity; (7) substantial 
LVSI; (8) deeper myometrial invasion; and (9) synchro-
nous ovarian cancer, particularly in clear cell or endome-
trioid variants (Addante et al. 2024; Yasuda 2024).

Regarding the prevalence of MMRd ECs across differ-
ent histotypes, UDC/DDC is the most common MMRd 
subtype (44%), followed by neuroendocrine carcinoma 
(42.9%), high-grade EEC (39.7%), mixed forms (33.3%), 
low-grade EEC (24.7%), CCC (9.8%), and CS (7.3%). Only 
sporadic cases of serous carcinoma and mesonephric-like 
carcinoma have been reported to show MMR deficiency 
(Addante et al. 2024; Vermij et al. 2020).

Compared to POLEmut ECs, MMRd ECs seem to be 
more prognostically affected by clinicopathological vari-
ables, although not as much as NSMP ECs. The ESGO-
ESTRO-ESP guidelines substratify MMRd ECs into 
different risk groups based on pathological features, such 
as the depth of myometrial invasion, LVSI and histo-
type. It seems that grading does not matter in the MMRd 
molecular group (Concin et  al. 2021). The overall prog-
nosis of MMRd ECs is intermediate (Vermij et al. 2020).

Molecular features: MMRd/MSI status as a biomarker
The MMRd group is characterized by microsatellite 
instability (MSI) and displays a high mutational rate with 
frequent insertions and deletions but low copy-num-
ber variations. MSI is a condition of genetic hypermut-
ability resulting from a defective DNA mismatch repair 
process, and the terms MSI and MMRd are often used 
interchangeably (Addante et al. 2024). The MMR system 
is one of the DNA repair pathways responsible for rec-
ognizing and repairing erroneous insertions, deletions, 
and mis-incorporations of bases that can occur during 
DNA replication. Deficiency in the MMR system leads 
to the accumulation of DNA mismatches in repetitive 
sequences known as microsatellites. These mismatches 
integrate into the genetic code as mutations, resulting 
in high levels of microsatellite instability (MSI-H). This 
signature arises from primary biallelic defects in genes 
that regulate DNA MMR, characterized by the loss of 
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function of at least one of the following genes: MLH1, 
PMS2, MSH2, or MSH6 (Addante et al. 2024; Mendiola 
et al. 2023).

Sporadic and germline MMRd ECs
MSI can be caused by somatic or germline alterations. 
Somatic alterations, accounting for 85% of cases, include 
biallelic epigenetic MLH1 hypermethylation (in about 
77% cases of sporadic ECs); downregulation of MMR 
genes by microRNAs; biallelic mutations; one somatic 
mutation and LOH; and secondary epigenetic MSH6 
silencing induced by neoadjuvant Radiotherapy and 
Chemotherapy (RT/CHT) (Addante et al. 2024). Approx-
imately 10% of MMRd ECs and 3% of all endometrial ECs 
are due to LS, a cancer susceptibility syndrome caused by 
germline mutations in the MMR genes (MLH1, PMS2, 
MSH2, MSH6) or EPCAM (Léon-Castillo 2023). Indeed, 
germline mutations in the MMR genes can determine 
two different types of clinical syndrome: (1) Constitu-
tional mismatch repair deficiency (CMMRD), a rare 
childhood cancer predisposition syndrome with reces-
sive inheritance, due to a biallelic MMR gene mutation in 
which MMR defects (occurring in MLH1, PMS2, PMS1, 
MSH2 or MSH6) are inherited from both parents; (2) 

LS, an autosomal dominant disorder characterized by 
the occurrence of multiple cancers, resulting from con-
stitutional germline mutations, affecting the DNA MMR 
genes MLH1, MSH2, MSH6 and PMS2; constitutional 
MLH1 hypermethylation; or deletion of the stop codon 
(3′ end truncating) of the EPCAM gene causing the epi-
genetic silencing of the neighboring MSH2 (Addante 
et al. 2024).

The identification of MMR pathogenic variants in ger-
mline sequencing is the gold standard for the diagnosis 
of LS. However, the first step for LS screening in EC is 
represented by IHC (Addante et  al. 2024). Universal 
tumor screening in endometrial cancer (EC) is increas-
ingly being adopted to identify individuals at risk of LS 
(Kaya et al. 2024). Table 2 shows an algorithm of Lynch 
Syndrome Testing.

Molecular testing methods: MMRP IHC, MSI testing 
and next generation sequencing
EC is one of the types of cancer most commonly associ-
ated with the MMRd/MSI-H phenotype. There is cur-
rently a strong recommendation to assess the MMR 
status in EC, and the main guidelines recommend IHC 
for analyzing this biomarker (Mendiola M et  al. 2023; 

Table 2 Lynch syndrome testing algorithm in ECs
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Casey et  al. 2021). Compared with others approaches, 
IHC is widely available and not expensive. The presence 
of stained non-neoplastic cells in the sample represents 
an internal positive control that easily identifies false neg-
ative results. Another advange of IHC over PCR is that 
the loss-of-expression pattern provides information on 
the particular altered gene, guiding later sequencing to 
rule out LS (Mendiola et al., 2023; Casey et al., 2021).

Identification of ECs with MMRd/MSI-H status has a 
threefold value: it (1) serves to detect patients at higher 
risk of presenting a LS, (2) provides prognostic informa-
tion as a surrogate marker for MMRd EC (once POLE 
pathogenic mutations have been excluded), and (3) holds 
predictive value, as patients with MMRd endometrial 
carcinomas benefit from check-point inhibitor treatment 
(Léon-Castilho 2023; Mendiola et al. 2023).

In order to classify MMRd ECs, either IHC or DNA-
based methods, such as panels of microsatellite markers 
for detecting MSI, can be used (Léon-Castilho 2023). 
Since MSI typically results from a loss of function in 
the MMR system, leading to decreased corresponding 
protein expression, IHC for MMR proteins can serve as 
a surrogate test to identify the MMRd group (Addante 
et  al. 2024). MMR IHC for MLH1, PMS2, MSH2, and 
MSH6 is the gold standard surrogate testing method and 
the MMRd ECs will have loss of nuclear expression of 
one or more of these four key MMR proteins, while the 

retention of expression of these four markers is known 
as MMR proficiency (Addante et al. 2024). Tumors with 
microsatellite stability (MSS) harbor an intact MMR 
machinery, which is call by the terminology “MMR pro-
ficiency” (MMRp). Dual loss of MLH1 and PMS2 is the 
most frequent pattern observed in daily IHC results 
(Addante et  al. 2024). Figure  2 illustrates an example 
of dual loss of MLH1 and PMS2, in a case of low-grade 
endometrioid EC (likely sporadic tumor) and Fig. 3 shows 
a case of mixed carcinoma with isolated loss of MSH6 
(likely germline tumor).

MMR proteins occur as heterodimers in the cell. While 
MLH1 and MSH2 can stabilize in the cell by forming het-
erodimers with different partners in the absence of PMS2 
and MSH6, respectively, this is not the case for PMS2 
and MSH6. As a result, there will always be loss of PMS2 
expression in absence of MLH1, and MSH6 will always 
be lost in absence of MSH2. Alternatively, it is possible to 
use a two-marker approach (IHC stain for only PMS2 and 
MSH6) to identify MMRd ECs (Léon-Castilho 2023).

The accordance between MMR IHC and MSI analy-
sis is high (93–95%), but discrepancies can occur due to 
(1) subclonal MMR deficiency (a well-delimited area of 
the tumor with loss of expression of a major MMR pro-
tein can be overlooked by using MSI analysis), (2) ECs 
with MSH6 mutations that may appear as microsatellite 
stable (MSS), and (3) incorrect interpretation of MSI 

Fig. 2 Low grade EC. A Exophytic tumor located n the fundus of the endometrial cavity. B Endometrioid histology (HE, 40X). C MLH1: loss 
of nuclear expression. Postive internal control (IHC 40X). D PMS2: loss of nuclear expression. Positive internal control (IHC, 40X). E MSH2: intact 
nuclear expression (IHC, 40X). F MSH6: intact nuclear expression (IHC 40X)
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assay results, which requires highly trained personnel 
(Léon-Castilho 2023).

However, there are specific conditions requiring 
PCR or NGS instead of MMR protein IHC, namely: 
(1) Whenever IHC shows indetermined/ambiguous/
equivocal results; (2) False negative IHC results due to 
pre-analytical tissue poor fixation; (3) Whenever IHC 
shows aberrant patterns (e.g., cytoplasmic, dot-like and 
perinuclear staining); (4) Whenever IHC shows the loss 
of only one heterodimer subunit, i.e., only MLH1 or 
PMS2 and not both (Addante et al. 2024).

Polymerase chain reaction (PCR) represents the first-
line molecular analysis for MSI testing, also performed 
on FFPE tissue slides (Walsh et  al. 2023). MLH1 pro-
moter methylation testing, also performed on FFPE 
tissue slides, is another relevant molecular testing tech-
nique used in cases of absent MLH1 or absent MLH1 
and PMS2 IHC. Most laboratories utilize a methyl-
ation-specific real-time PCR assay to determine the 
presence of methylation. It is used in cases of absent 
MLH1 or absent MLH1 and PMS2 IHC to differentiate 
between somatic loss due to promoter methylation and 
potential germline loss. Defective MMR in sporadic 
endometrial cancer is most often due to inactivation of 

the MLH1 gene promoter by methylation, by epigenetic 
silencing (Walsh et al., 2023).

NGS represents another type of molecular test that 
allows efficient sequencing of the entire genome, also 
performed on FFPE tissue slides. NGS has the advantage 
of allowing coupling MSI analysis with the determination 
of tumor mutational burden (Walsh et al. 2023).

MSI, PD‑1/PD‑L1, TMB and immunotherapy in EC
Concerning therapeutic options, MMRd ECs are consid-
ered optimal candidates for immunotherapy due to their 
high mutation load and rich immune infiltrate (Addante 
et  al. 2024). All MMRd tumors exhibit high microsatel-
lite instability (MSI-H), with a rapid accumulation of 
genomic mutations and high mutational load (H-TMB: 
10–100 mutations per megabase). These tumors har-
bor hundreds to thousands of mutations and are highly 
immunogenic, with strong expression of immune check-
points and high levels of lymphocyte infiltration. Cells 
from MMRd tumors may express programmed death 
ligand 1 (PD-L1) on their membranes, and infiltrat-
ing lymphocytes display upregulated checkpoint pro-
teins, including programmed death 1 (PD-1), cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4), and 

Fig. 3 A Mixed EC (endometrioid‑serous histotype) (HE, 4X). B Endometrioid component (HE, 10X). C Serous solid component (HE, 40X). D p53‑abn 
with nuclear overexperssion in serous component (IHC, 40X). E MSH6: loss of expression in the two tumor components espacially distincts. (*) 
serous solid pattern (IHC, 10X)
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lymphocyte-activation gene 3 (LAG-3) (Marabelle et  al. 
2020). Immune cell infiltration may result from the high 
number of mutations found in MMRd tumors, specifi-
cally frameshift mutations, which produce mutant pro-
tein neoantigens (Addante et al. 2024).

The Phase II KEYNOTE-158 study demonstrated the 
clinical benefit of anti–programmed death-1 (PD-1) 
therapy with pembrolizumab in patients with previ-
ously treated unresectable or metastatic MMRd colorec-
tal cancer, showing a response rate of 48% and a median 
progression-free survival of 13.1  months. Other studies 
with immunotherapies such as dostarlimab, durvalumab, 
and avelumab in similar scenarios have also shown 
good clinical benefits. Pembrolizumab is a humanized 
immunoglobulin G4 monoclonal antibody that binds 
to the inhibitory immune checkpoint receptor PD-1 
expressed on lymphocytes, blocking the binding of its 
ligands PD-L1 and PD-L2, thereby allowing reactiva-
tion of T-cell‒mediated tumor destruction (Marabelle 
et  al., 2020). PD-L1 expression by IHC may predict the 
response to anti-PD-1/PD-L1 monoclonal antibodies 
(Addante et  al., 2024; Mendiola et  al. 2023). Given that 
MMRd/MSI status may serve as a suitable biomarker for 
response to PD-1/PD-L1 immunotherapy with pembroli-
zumab (Marabelle et al. 2020), ESGO/ESTRO/ESP guide-
lines recommend IHC for MMR proteins in all EC cases 
as a universal screening test to assess MMRd/MSI status 
and identify patients who could benefit from immuno-
therapy (Concin et al. 2021).

Tumor mutational burden (TMB) is a biomarker 
defined as the total number of somatic mutations per 
coding area of a tumor genome, obtained through NGS. 
Tumors with high TMB (TMB-H) often harbor elevated 
levels of neoantigens, making them targets for activated 
immune cells and potentially leading to superior and/
or prolonged responses to ICIs, including anti-PD-1 
agents. Cancers with > 10 mutations/Mb are referred to 
as TMB-H (Wash et  al. 2023). POLE-mutant ECs and 
MMRd ECs are examples of TMB-H tumors, character-
ized by immunogenic microenvironments (Marabelle 
et al. 2020). A recently published biomarker analysis from 
KEYNOTE-158 reported that tumors with TMB-H status 
had a higher objective response rate to pembrolizumab 
monotherapy compared to non-TMB-H tumors, lead-
ing to the FDA approval of pembrolizumab for TMB-H 
solid tumors (Marabelle et al. 2020). TMB is a useful bio-
marker for selecting EC patients for ICI therapy (Walsh 
et al. ; Marabelle et al. 2020).

p53‑abnormal (p53abn) group
Frequency, clinicopathologic and molecular features
Somatic mutations of the TP53 gene on chromosome 
17p13.1 are present in up to 28% of all endometrial 

cancers (ECs) (Jamieson et  al. 2021). Given that 
p53-abnormal (p53-abn) ECs represent the most aggres-
sive molecular subtype with a poor prognosis, TP53 
mutation status is a suitable biomarker for predicting 
unfavorable outcomes in EC patients (Jamieson et  al. 
2021; Arciuolo et al. 2022).

This group is characterized by a low mutation rate 
(TMB < 10 mutations per megabase) and high somatic 
copy-number alterations, with TP53 mutations present 
in 90% of cases (Jamieson et  al. 2021). The majority of 
p53-abn ECs are high-grade serous carcinomas, along 
with other histotypes such as carcinosarcomas, mixed 
ECs, and clear-cell carcinomas (Jamieson et  al., 2021). 
These other histotypes exhibit similarly aggressive bio-
logical behavior, resulting in the worst outcomes (Jamie-
son et  al., 2021). Consequently, ESGO-ESTRO-ESP 
guidelines classify all p53-abn ECs as high-risk, except 
for non-myoinvasive cases (Arciuolo et al. 2022).

Molecular testing methods
The assessment of p53 by IHC has a high concordance 
with TP53 mutational status, making it a suitable surro-
gate method for TP53 mutation detection (Köbel et  al. 
2019; Köbel et al. 2021). Although p53 IHC is not a per-
fect substitute for copy-number analysis, its accuracy in 
routine practice remains adequate. Since 2020, the WHO 
has endorsed the inclusion of p53 IHC in diagnostic algo-
rithms due to its accessibility, simplicity, and cost-effec-
tiveness. However, the correct interpretation of p53 IHC 
by pathologists is crucial for accurate diagnostic reports, 
and the terminology used must be clearly understood by 
the multidisciplinary team (Arciuolo et al. 2022).

In a pathologist’s daily routine, the majority of TP53-
mutant cases shows p53 overexpression on IHC, defined 
by a diffuse and uniformly strong nuclear staining in 
80–100% of tumor cells. This aberrant pattern is com-
monly linked to missense mutations in the DNA-binding 
domain of TP53 (Vermij et  al., 2022). Others aberrant 
patterns include complete loss of p53 nuclear expression 
(with a positive internal control) and unequivocal cyto-
plasmic expression (Jamieson et al. 2021). The "null" pat-
tern often results from frameshift or nonsense mutations 
encoding truncated p53 protein, and the cytoplasmic 
overexpression is caused by mutations in the tetrameri-
zation or C-terminal domain of TP53. Köbel et al. (Köbel 
et al. 2019 and 2021) have described a heterogenous pat-
tern ("subclonal"), where a distinct geographic area of 
the tumor exhibits both a abnormal p53 staining and a 
wild-type p53 expression (Vermij et al., 2022). Subclonal 
patterns are frequently associated with MMRd or POL-
Emut, where p53 abnormalities lack prognostic value 
(Arciuolo et  al.  2022). Another subset of TP53-mutant 
tumors (~ 5%) harbor truncated TP53 mutations that do 
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not manifest abnormal p53 expression on IHC (Arciu-
olo et  al., 2022). Additionally, some copy number-high 
EC cases, defined solely by molecular analysis of copy-
number variations, do not exhibit TP53 mutations 

(Arciuolo et  al. 2022). Figure  4 illustrates three exam-
ples of abnormal p53 IHC patterns, considered indica-
tive of mutation-type staining (overexpression, null-type 
and citoplasmatic stain). Figure  5  shows two cases of 

Fig. 4 A Case 1: CCC (HE, 40X). B CCC: NAPSIN A: Positive stain (granular citoplasmatic stain) (IHC, 40X). C CCC: p53 aberrant, nuclear overexpression 
(IHC, 40X). D Case 2: Serous carcinoma (ESC) (HE, 40X). E ESC: p16 overexpression (IHC, 40X). F ESC: p53 aberrant stain, null type. Positive estromal 
cells (IHC, 40X). G Case 3: ESC (HE, 40X). H ESC: p53 aberrant, nuclear and citoplasmatic stain (IHC, 40X)

Fig. 5 Two cases of low grade endometrioid tumor. A Case 1: G2 endometrioid tumor (HE, 40X). B Case 1: p53‑abn (nuclear overexpression) (IHC, 
40X). C Case 1: p16 aberrant, nuclear and citoplasmatic overexpression (IHC, 40X). D Case 2: G1 endometrioid tumor (HE, 40X). E Case 2: p53 wild 
type (IHC, 40X). F Case 2: p16 mosaic type (IHC, 40X)
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low-grade endometrioid tumors (same histology), with 
different p53 status (abnormal/mutated type and normal/
wild type).

Due to the aggressive nature of p53-abnormal (p53-
abn) tumors, adjuvant treatment is often recommended 
for this group. For all myoinvasive cases, chemoradio-
therapy is indicated (Arciuolo et al. 2022; Jamieson et al. 
2021). Additionally, targeted therapy options may be 
available for a subset of cases based on specific charac-
teristics such as homologous recombination deficiency 
(HRD) or human epidermal growth factor receptor 2 
(HER2) overexpression/amplification. Patients with these 
features are potential candidates for HER2 inhibitors or 
PARP inhibitors (Arciuolo et  al., 2022; Jamieson et  al., 
2021).

No Specific Molecular Profile (NSMP) group
Most endometrial tumors (about 50%) with no molecu-
lar signatures are placed in this group. These tumors 
neither exhibit high mutational burden nor significant 
copy-number variations, been similar to the TCGA copy-
number low group (Arciuolo et  al. 2022). NSMP ECs 
represent a diagnosis of exclusion, assigned based on 
the absence of MMR deficiency, pathogenic POLE muta-
tions, and p53 abnormalities. This group shows diverse 
clinicopathological and molecular features and is gener-
ally associated with intermediate patient outcomes, with 
strikingly different outcomes at the individual level (Aro 
et  al. 2024). NSMP ECs encompass young women with 
low-grade indolent ECs arising in settings of obesity/
excess estrogen and thin older women with rare histo-
types historically categorized as high-risk and with unfa-
vorable disease trajectories. A study showed that after the 
removal of high-risk NSMP cases, the low-grade (grade 1 
or 2) and ER-positive endometrioid carcinomas, account-
ing for 84% of the NSMP group and corresponding to 
prototypical type 1 EC, was associated with a very favora-
ble prognosis (Jamieson et al. 2023). Low ER expression 
is associated with hightumour grade, lymph node metas-
tasis, deepmyo-invasion, high tumour stage, increased 
risk of disease recurrence, decreased overall survival 
and decreased disease-specific survival (Alafraidi et  al. 
2024). It seems that NSMP non-endometrioid tumors 
have a unfavored prognosis (like p53-abnormal ECs), 
while NSMP endometrioid ECs demonstrate a highly 
heterogeneous prognosis, ranging from favorable (like 
POLE-mutant ECs) to unfavorable (like p53-abnormal 
ECs) (Arciuolo et al., 2022). There is a suggestion that ER 
IHC can serve as a biomarker for stratification of NSMP 
carcinomas into two clinically distinct groups: low-
risk carcinomas with high ER expression and an excel-
lent prognosis similar to that of POLEmut endometrial 

carcinoma, and high-risk carcinomas with low ER 
expression (Alafraidi et al., 2024).

A model of sub-stratifying is currently being evalu-
ated in the PORTEC-4a study (Van den Heerik et  al. 
2020), which integrates TCGA-based molecular sub-
groups with L1-CAM overexpression, substantial LVSI, 
and CTNNB1-exon 3 mutations. Such sub-stratification 
appears to be more applicable to the NSMP tumors (Arci-
uolo et  al. 2022; Van den Heerik et  al. 2020). This trial 
global study applies a molecular-integrated risk profile to 
the high-intermediate risk cohorts of the PORTEC-1 and 
-2 trials, utilizing L1CAM and CTNNB1 and delineating 
three risk categories (favorable, intermediate, and unfa-
vorable) with significantly different recurrence-free sur-
vival rates. L1CAM serves as an independent risk factor 
for locoregional and distant spread and is associated with 
TP53 mutations, high tumor grade, and LVSI. L1CAM is 
a crucial indicator of high-risk disease. L1CAM expres-
sion is most frequent in p53-abnormal (p53-abn) tumors 
but also predicts worse outcomes among tumors with 
NSMP (Oaknin et al. 2022). CTNNB1-exon 3 mutations 
prognosticate a higher risk of recurrence, particularly in 
the copy-number-low group (Van den Heerik et al. 2020; 
Wash et  al. 2023). In summary, L1CAM overexpression 
and CTNNB1 mutations appear to be significant prog-
nostic biomarkers with clinical implications for decid-
ing adjuvant treatment in patients with EC (Van den 
Heerik et al., 2020). ER positivity and L1CAM negativity 
are strongly associated with low grade, which limits the 
ability of these biomarkers to further improve prognos-
tication in these patients. Notably, risk assessment for 
high-risk–advanced-metastatic NSMP and MMRd sub-
type carcinomas can be refined by ER status (Aro et  al. 
2024).

Tumors with multiple classifying alterations
Leon-Castillo et al. reported that approximately 3–5% 
of ECs are classified as “multiple classifiers,” exhibit-
ing more than one molecular signature. They demon-
strated that double classifiers such as MMRd/p53abn 
tumors behave like MMRd EC and POLEmut/p53abn 
behave like POLEmut EC in terms of morphology, 
prognosis and clinical behavior, and not like p53abn 
ECs (León-Castillo et  al. 2020). The multiple classi-
fiers represent a rare proportion (3–10%) of molecu-
larly classified ECs from various previously published 
studies, such as the ProMisE confirmation and Trans-
PORTEC early-stage EC cohorts, and efforts have 
been directed towards understanding their prognos-
tic implications (León-Castillo et  al. 2020; De Vitis 
et al. 2024). The most frequent subgroup was MMRd-
p53abn, followed by POLEmut-MMRd, POLEmut-
p53abn, and POLEmut-MMRd-p53abn (De Vitis et al., 
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2024). Indeed, studies indicate that POLE mutations 
demonstrate the most profound prognostic signifi-
cance, surpassing both MMRd and TP53 mutations. 
Following POLE mutations, MMRd exhibits a lesser 
prognostic impact, followed by TP53 abnormalities. 
Therefore, both prognosis and genomic data strongly 
support that POLEmut trumps both MMRd and 
p53abn, and MMRd trumps p53abn (León-Castillo 
et al., 2020). These findings endorse the prioritization 
of POLE sequencing over MMR protein and p53 IHC, 
in the algorithms of molecular classification proposed 
in clinical oncology guidelines (León-Castillo et  al., 
2020).

Given the high mutational burden observed in POL-
Emut and MMRd tumours, secondary TP53 muta-
tions/p53 IHC abnormalities can be found. These 
findings suggest the TP53 mutation is a later event 
during tumour progression in POLEmut and MMRd 
tumours and does not affect the clinical outcome. 
This also highlights the importance of interpreting 
p53 and MMR IHC in the context of POLE mutation 
status to avoid overtreatment in these patients with 
‘multiple classifiers’. The 2020 ESGO/ESTRO/ESP 
guidelines for the management of patients with EC 
classify stage I-II POLEmut EC as low-risk and omis-
sion of adjuvant therapy should be considered (Concin 
et al. 2021). Information on p53abn status alone is not 
enough on its own to guide treatment decision-mak-
ing as a proportion of these are double-classifiers with 
significant prognostic and predictive implicantions 
(León-Castillo et al. 2020). Table 3 shows subgroups of 
double classifiers and Table 4 shows a summary of the 

four-histomolecular groups, including their prognosis 
and clinical relevance.

Other selected biomarkers in EC
Human epidermal growth factor receptor 2 (HER2, HER2/
Neu or ERBB2)
HER2/Neu, the human epidermal growth factor receptor 
2, also called ERBB2, has been established as an impor-
tant biomarker with both prognostic and therapeutic 
implications in breast and gastric cancers (Pina et  al. 
2024). Endometrial serous carcinoma (ESC) is an aggres-
sive, high grade endometrial cancer subtype associated 
with poor clinical outcomes and significant mortality. 
Approximately 30% of ESC overexpress HER2 (Fader 
et al. 2020). Figure 6 illustrates an example of ESC with 
3 + HER2 positivity.

ESC is typically treated with hysterectomy and surgi-
cal staging followed by platinum/taxane combination 
chemotherapy. Despite overexpression or amplification 
of HER2 in this subtype of cancer carries a poor progno-
sis (Ferriss et  al. 2021), anti-HER2 therapy has emerged 
as an effective targeted treatment approach for patients 
with advanced stage and recurrent ESC, resulting in sig-
nificantly prolonged progression-free and overall survival 
when combined with the standard chemotherapy regi-
men (Fader et al. 2020).

Most cases of HER2 overexpression are caused by 
HER2 gene amplification and can be detected either by 
IHC for the gene product, by fluorescent in situ hybridi-
zation (FISH) to determine the gene copy number, and by 
NGS (McNamara et al. 2023).

Table 3 Multiple classifiers
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Tumors with intense complete or lateral/basolateral 
membranous HER2 immunostaining in more than 30% 
of tumor cells are considered positive and assigned a 
3 + score, 2 + score, equivocal, is assigned when intense 
complete or lateral/ basolateral membrane staining was 
seen in 30% or less of tumor cells, or weak to moderate 
staining in greater than or equal to 10% of tumor cells. 
0 score (no staining observed) and 1 + score (incomplete 
membrane staining that is faint/barely perceptible in any 
proportion of cells or weak complete staining in less than 
10% of tumor cells) are considered negative. FISH is per-
formed only on tumors with a 2 + immunohistochemical 
score on a large tumor area in direct correlation with the 
HER2 immunostained slide. HER2/CEP17 ratio of 2.0 or 
HER2/CEP17 ratio less than 2.0 with average HER2, copy 
number equal to or greater than 6 per nucleus is consid-
ered amplified (Buza 2021; Buza 2022). Table 5 shows the 
reporting results of HER2 testing by IHC and by FISH 
(dual-probe assay) for ESC.

HER2 intratumoral heterogeneity by IHC is defined by 
the presence of at least two-degree difference in stain-
ing intensity (0 vs 2 + , 1 + vs 3 + , or 0 vs 3 +) involving 
at least 5% of tumor cells (Ross et al. 2022). With a tumor 
harboring both 3 + and 0/1 + HER2 tumor cells, HER2-
directed therapy may not work up front or may dimin-
ish as HER2-negative tumor cells outgrow HER2-positive 
tumor cells due to trastuzumab’s selective pressure in 
HER2 heterogenous tumors over time (Buza 2021). Dis-
cordant HER2 status has also been observed between 
paired primary and metastatic tumors in close to 20% of 

breast, gastric, and most recently ECs (Buza 2021). HER2 
testing of multiple specimens (endometrial biopsy, curet-
ting, hysterectomy, and metastatic foci) is stimulated, as 
it may increase the rate of HER2 positivity and eligibility 
for targeted therapy (Rottmann et al. 2021).

Primary results from the DESTINY-PanTumor02 
phase II assessed the efficacy of Trastuzumab deruxtecan 
(T-DXd), using ASCO/College of American Pathology 
guidelines for scoring HER2 in gastric cancer, and showed 
benefits observed in the endometrial, cervical, and ovar-
ian cohorts. In the endometrial cohort, 77.5% of patients 
had ≥ two prior lines of therapy. The objective response 
rate in patients with HER2 IHC 3 + expression was 84.6%. 
In all patients with endometrial cancer, median PFS and 
OS were 11.1 months and 26.0 months, respectively. The 
clinically significant response and survival rates observed 
in this study are encouraging for HER2-expressing ECs, 
which are typically associated with high risk for pro-
gression and poor survival rates (Meric-Bernstam et  al. 
2024). Table 6 shows IHC scoring for HER2 in gastric and 
gastro-oesophageal junction cancer.

In high copy number/ p53abn group, patients can have 
mutations in FBXW7, PIK3 and PPP2R1A. PI3K/AKT/
mTOR pathway is affected in 50–60% and ERBB2 altera-
tions are observed in 25% of the patients, which can be 
potential targets for new combinations (Pina et al. 2024). 
Other notable recurrent genetic alterations included 
PIK3CA activating mutations (40%) and ERBB3 amplifi-
cation (10%), both of which have been reported to impact 
the efficacy of anti-HER2 therapy in other cancer types 

Table 4 Histomolecular classification of ECs
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Fig. 6 A SEC (HE, 40X). B p16: nuclear and citoplasmatic overexpression (IHC, 40X). C p53‑abn: nuclear overexpression (IHC, 40X). D HER2: intense 
and complete membranous expression score 3 + (IHC, 40X)

Table 5 Reporting results of HER2 testing by IHC and FISH (dual‑probe assay) for ESC
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(Ross et  al. 2022). HER2-directed Antibody–Drug Con-
jugates show substantial promise and stand to provide 
significant improvements in effectivity and tolerability 
of cytotoxic therapy (McNamara et  al. 2023). The cor-
relation between HER2 positivity and p53abn EC is sig-
nificantly stronger than the correlation between HER2 
positivity and serous histology (Karpel et al. 2023; Vermij 
et  al.  2020). It suggests that subsets of high-grade ECs 
with aberrant p53 expression may also be HER2 ampli-
fied, and these patients could benefit from the addition 
of targeted therapy (Joehlin-Price et al. 2023, Ross et al., 
2022).

Estrogen and progesterone receptors (ER/PR)
Along the years, hormonal therapy has been employed in 
ER and PR-positive ECs, as viable management option, 
particularly in cases of recurrent or metastatic disease 
within the NSMP group, where the majority of endome-
trioid tumors exhibiting overexpression of ER and PR are 
placed (Karpel et al. 2023).

The hormone receptor status is determined in FFPE tis-
sue sections using IHC and despite the absence of a con-
sensus regarding the reporting of ER and PR IHC results, 
the College of American Pathologists (CAP) advocates 
for a standardized reporting approach in Ecs, akin to pro-
tocols employed in breast cancer diagnosis. The assess-
ment involves the proportion of positive tumor cells 
and the intensity of immunoreactivity, akin to protocols 
employed in breast cancer diagnosis. Positivity is defined 
by nuclear staining in at least 1% of tumor cells (Walsh 
et al. 2023; Longacre et al. 2017).

Conclusion
The rise of molecular classification has profoundly 
changed the approach to EC management, with the 
emergence of biomarker-driven therapies guided by 
diagnostic, predictive, and prognostic biomarkers. The 
integration of these biomarkers as molecular tools in 
pathological reports represents a new histomolecular 
concept for EC. This integration enables clinicians to per-
form individualized risk stratification based on molecu-
lar profiles and to define tailored treatment strategies. 
This molecular approach is so applicable that expanding 
clinical trials are in progress, and new molecular biologi-
cal tools, such as liquid biopsy biomarkers, are expected 
to emerge. Novel AI-based methods have been applied 
to enhance the molecular classification of EC, highlight-
ing a broader range of morphological findings that might 
otherwise be classified as dichotomous by the human 
eye (Fremond et  al. 2023). Additionally, clonal expres-
sion of markers or heterogeneous findings could be bet-
ter integrated through computational imaging tools 
(Darbandsari et al. 2024). In the era of molecular pathol-
ogy, pathologists have a new role, integrating molecu-
lar knowledge into pathological reports and guiding 
treatment decisions in collaboration with multidiscipli-
nary teams, which is crucial for the success of precision 
medicine.
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